منابع مشابه
Rapid-scan EPR imaging.
In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be o...
متن کاملRapid-scan EPR of immobilized nitroxides.
X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for (14)N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for (15)N-perdeuterated tempone. These wide scans were made possible by mod...
متن کاملUsing rapid-scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude.
X-band rapid-scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid-scan and continuous-wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid-scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid-scan...
متن کاملW-band frequency-swept EPR.
This paper describes a novel experiment on nitroxide radical spin labels using a multiarm EPR W-band bridge with a loop-gap resonator (LGR). We demonstrate EPR spectroscopy of spin labels by linear sweep of the microwave frequency across the spectrum. The high bandwidth of the LGR, about 1 GHz between 3 dB points of the microwave resonance, makes this new experiment possible. A frequency-tunabl...
متن کاملA rapid freeze-quench setup for multi-frequency EPR spectroscopy of enzymatic reactions.
Electron paramagnetic resonance (EPR) spectroscopy in combination with the rapid freeze-quench (RFQ) technique is a well-established method to trap and characterize intermediates in chemical or enzymatic reactions at the millisecond or even shorter time scales. The method is particularly powerful for mechanistic studies of enzymatic reactions when combined with high-frequency EPR (ν≥90 GHz), wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Magnetic Resonance
سال: 2011
ISSN: 1090-7807
DOI: 10.1016/j.jmr.2011.05.006